Large deviations for the largest eigenvalue of matrices with variance profiles

نویسندگان

چکیده

In this article we consider Wigner matrices (XN)N∈N with variance profiles which are of the form XN(i,j)=σ(i∕N,j∕N)ai,j∕ N where σ is a symmetric real positive function [0,1]2, either continuous or piecewise constant and ai,j independent, centered one above diagonal. We prove large deviation principle for largest eigenvalue those under condition that they have sharp sub-Gaussian tails some additional assumptions on σ. These bounds verified example Gaussian variables, Rademacher variables uniform [− 3, 3]. This result new even entries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviations principle for the largest eigenvalue of Wigner matrices without Gaussian tails

We prove a large deviation principle for the largest eigenvalue of Wigner matrices without Gaussian tails, namely such that the distribution tails P(|X1,1| > t) and P(|X1,2| > t) behave like e−bt α and e−atα respectively for some a, b ∈ (0,+∞) and α ∈ (0, 2). The large deviation principle is of speed Nα/2 and with an explicit good rate function depending only on the tail distribution of the ent...

متن کامل

Large Deviations for the Largest Eigenvalue of an Hermitian Brownian Motion

We establish a large deviation principle for the process of the largest eigenvalue of an Hermitian Brownian motion. By a contraction principle, we recover the LDP for the largest eigenvalue of a rank one deformation of the GUE.

متن کامل

Eigenvalue variance bounds for covariance matrices

This work is concerned with finite range bounds on the variance of individual eigenvalues of random covariance matrices, both in the bulk and at the edge of the spectrum. In a preceding paper, the author established analogous results for Wigner matrices [7] and stated the results for covariance matrices. They are proved in the present paper. Relying on the LUE example, which needs to be investi...

متن کامل

Moderate deviations for the eigenvalue counting function of Wigner matrices

We establish a moderate deviation principle (MDP) for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on fine asymptotics of the variance of the eigenvalue counting function of GUEmatrices due to Gustavsson. The extension to certain families of Wigner matrices is based on the Tao and Vu Four Moment Theorem and applies localization results by Erdös, Yau and Yin. Mor...

متن کامل

Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices

The problem of understanding the limiting behavior of the largest eigenvalue of sample covariance matrices computed from data matrices for which both dimensions are large has recently attracted a lot of attention. In this paper we consider the following type of complex sample covariance matrices. Let X be an n×p matrix, and let its rows be i.i.d NC(0,Σp). We denote byHp the spectral distributio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2022

ISSN: ['1083-6489']

DOI: https://doi.org/10.1214/22-ejp793